skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Xuanhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The low temperature monoclinic, insulating phase of vanadium dioxide is ordinarily considered nonmagnetic, with dimerized vanadium atoms forming spin singlets, though paramagnetic response is seen at low temperatures. We find a nonlocal spin Seebeck signal in VO2 films that appears below 30 K and that increases with a decrease in temperature. The spin Seebeck response has a nonhysteretic dependence on the in-plane external magnetic field. This paramagnetic spin Seebeck response is discussed in terms of prior findings on paramagnetic spin Seebeck effects and expected magnetic excitations of the monoclinic ground state. 
    more » « less
  2. Hexagonal boron nitride (hBN) has become a mainstay as an insulating barrier in stackable nanoelectronics because of its large bandgap and chemical stability. At mono- and bilayer thicknesses, hBN can function as a tunnel barrier for electronic spectroscopy measurements. Noise spectroscopy is of particular interest, as noise can be a sensitive probe for electronic correlations not detectable by first-moment current measurements. In addition to the expected Johnson-Nyquist thermal noise and nonequilibrium shot noise, low frequency (<100 kHz) noise measurements in Au/hBN/Au tunneling structures as a function of temperature and bias reveal the presence of thermally excited dynamic defects, as manifested through a flicker noise contribution at high bias that freezes out as temperature is decreased. In contrast, broad-band high frequency (∼250MHz – 580MHz) measurements on the same device show shot noise with no flicker noise contribution. The presence of the flicker noise through multiple fabrication approaches and processing treatments suggests that the fluctuators are in the hBN layer itself. Device-to-device variation and the approximate 1/f dependence of the flicker noise constrain the fluctuator density to on the order of a few per square micron. 
    more » « less